When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
深度神经网络非常成功,因为高度准确的波函数ANS \“ ATZE用于分子基础状态的变异蒙特卡洛计算。我们提出了一个这样的Ansatz,Ferminet的扩展,以计算定期汉密尔顿人的基础状态,并研究均质电子气。小电子气体系统基态能量的费米特计算与先前的启动器完全构型相互作用量子蒙特卡洛和扩散蒙特卡洛计算非常吻合。我们研究了自旋偏振均质的均质电子气体,并证明了这一点相同神经网络架构能够准确地代表离域的费米液态和局部的晶体状态。没有给出网络,没有\ emph {a emph {a a a emph {a a emph {a e emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {并自发打破对称性以产生结晶蛋白E基态在低密度下。
translated by 谷歌翻译
TRISTRUCCUCTIONATIOPIC(TRISO)涂层颗粒燃料是强大的核燃料,并确定其可靠性对于先进的核技术的成功至关重要。然而,Triso失效概率很小,相关的计算模型很昂贵。我们使用耦合的主动学习,多尺度建模和子集模拟来估计使用几个1D和2D模型的Triso燃料的故障概率。通过多尺度建模,我们用来自两个低保真(LF)模型的信息融合,取代了昂贵的高保真(HF)模型评估。对于1D TRISO模型,我们考虑了三种多倍性建模策略:仅克里格,Kriging LF预测加克里格校正,深神经网络(DNN)LF预测加克里格校正。虽然这些多尺度建模策略的结果令人满意地比较了从两个LF模型中使用信息融合的策略,但是通常常常称为HF模型。接下来,对于2D Triso模型,我们考虑了两个多倍性建模策略:DNN LF预测加克里格校正(数据驱动)和1D Triso LF预测加克里格校正(基于物理学)。正如所预期的那样,基于物理的策略一直需要对HF模型的最少的呼叫。然而,由于DNN预测是瞬时的,数据驱动的策略具有较低的整体模拟时间,并且1D Triso模型需要不可忽略的模拟时间。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译